the skull. As he gives the number of vertebrae as 21 it seems probable that in the preparation of the skeleton the first vertebra adhered to the cranium, and was then removed separately and perhaps lost.

Subfamily 2. Caproinee.

Mouth extremely protractile; premaxillary processes very long, separating the frontals and extending back beneath the supraoccipital; maxillary narrow, without supramaxillary; a broad subocular shelf. Spinous dorsal not shorter than the suft-rayed fin.

The Miocene Proantigonia, Kramberger, is closely allied to the recent Capros, Lacep.

LIV-The Origin and Evolution of the Teleostean Fishes of the Order Heterosomata. By C. Tate Regan, M.A.
(Published by permission of the Trustees of the British Museum.)
The Heterosomata, or Flat-fishes, differ from all other fishes in their asymmetry; both eyes are on one side, which is coloured, whilst the eyeless side is usually white.

Fig. 1.

A.

B.

Disarticulated frontal bones of (A) Halibut (Hippoglossus hippoglossus) and (B) Plaice (Plewronectes platessa). (After Traquair.)
$p f u$, prefrontal articulation ; $i p$, interorbital process; i, interorbital bar.
In the skull of all flat-fishes there is a bony interorbital bar mainly formed by the interorbital portion of the frontal bone
of the eyed side, displaced oulwards and downwarls; the frontal of the blind side is broad amd may send forward a process to share in the formation of the interombal bar, but the main part of this bome in the orbital region is on the wroner side of its eye, althonsh its relations are normal in other respects. The last-mamed fact lands one to suspect the correctness of 'Traquain's interpretation of this part of the frontal of the hlind side; which here regats as a now process sent forwards to join the pratrontal in order to form a har or bridre supposed to be requisite for the stability of the cranium.
'l'raguair's * elaborate descriptions and firures of the crania of sevenal flat-fishes are most valuable, an l his interpetation is in harmony wish the ofen repated statement that the migration of the eye canses or is cansed by a twisting of the Whule ortital region of the skull, anl has been generally accepted; but recent embryolurical work does mot, in my opinion, bear ont this view. As is well known, flat-tish larve have the eyesin opposite sides and swim vertically, and at an barly age one eye migrates romd the top of the heat to the other sile, which is thenceforth uppermost.

Willians \dagger has studied the migration of the eye in Pleuronetes americanus; in the cartilaginons cranium there are two supraorhital bars, precursors of the frontal bones, connceting the lateral ethmoils with the otie capsules; preparatory to the metamophosis there is a rapid resorption of the part of the supraorbital bar which lies in the path of the migrating eye, so that this bar becomes redued to a forwarlly directed process of the otic capsule and a backwardly directel one of the lateral ethmoid. The eye migrates between these two projections, and so approaches the supranthital har of the futme eyed side; the eyes then move th their final position, cansing a torsion of this supm-mbital bar, which also affects Whe ethmoid region; after the shifting is complete, ossitication takis place.

From this account it seems that it is wrong to say that the two cyes are on one side ats the result of the twisting of the orbital region of the skull, fur the first step is a migration of one eye into the territory of its frontal bone, cansing resoption of cartilage in the larvat, and in the adult producing the effect that the orbital part of its froutal ossifies round it or even entirely outside it. The displacement of the frontal of the lower eye hats enlarged the area of that of the

[^0]upper eye; but it seems wrong to speak of any part of the latter bone as a new formation, least of all that part which has the same position and the same relations (except to the eye) as it would have if the skull were symmetrical.

For a long time the flat-fishes were regarded as asymmetrical Gadoids, but in the latter the absence of spinous finrays, the large number of rays in the pelvic fins, and the indirect attachment of the pelvic bones to the cleithra may be regarded as primitive features, and it is probable that these fishes have evolved from generalized Iniomi, such as the Aulopidæ. In the Heterosomata, on the contrary, spinous fin-rays are present in Psettodes, the least specialized member of the order, the pelvic fins are never more than 6 -rayed, and the pelvic bones are directly attached to the cleithra. Psettodes is simply an asymmetrical Percoid ; about the first ten dorsal rays are spinous, the candal has 17 rays, 15 of which are branched, and each pelvic fin is formed of a spine and 5 soft rays. The mouth, the skull (except for its asymmetry), the pectoral arch, and the vertebral column are all quite Percoid.

In other Pleuronectoids all the fin-rays are articulated, and in many of them the pelvic fins are 6 -rayed, with the anterior ray simple. I am unable to confirm Boulenger's statement that an additional ray is present in Hippoglossus, and it is clear to me that the anterior pelvic ray of this and othei genera with 6-rayed pelvic fins corresponds to the spine of Psettodes, and that the formation of joints in response to mechanical requirements has reconverted spines into articulated rays in the dorsal and pelvic fins of the Heterosomata, as in the case of the epaxial rays of the homocercal caudal fin *.

Thilo \dagger and Boulenger \ddagger consider that the Zeidæ are nearly related to the Heterosomata; I cannot find any anatomical evidence in support of this idea. I much more readily subscribe to Boulenger's view that the Upper Eocene Amphistium is allied to the symmetrical ancestor of the flat-fishes, for in my opinion this fish is a Percoid, which should probably be placed in the family Scorpididæ near the existing Psettus, or may perhaps be related to Platax. Thanks to the courtesy of Dr. Smith Woodward, I have been able to examine the two examples of Amphistium paradoxum in the British Museum. The caudal fin has 17 principal rays, 15 of which are branched, in addition to a few graduated rays above and

[^1]below ; the pelvic fin, preservect only in the Monte Bolear specimen, is formed of a spine and, in my opinion, 5 solt rays, for I cannut see agrater mumber inserted on the pelvic hone which lies uppermost, the ontlines of which are fairly distinct.

Bonlenger's restoration shows several features of Pseltodes or Zeus rather than P'setus which I am unable to see in the fossils; thas he shows the lower jaw mearly as long as the head and the prapoperculam vertiaal and saarcely curved, whereas the lower jaw appeas to me only a little more than hali the length of the head, and the precoperenlum to have at distinct lower limb; also the origin of the anal fin is not so far forward in the actual fossils as it is in the restoration.

Buthes and Sulea were nlready in existence in the Upper Eocene, and, indeed, the whole Upper Eoecne fish-fanna is strikingly modern, so that there is no reason to regard Amphistium as ancestral to the flat-fishes on account of its occurrence in the Upper Eocene.

The rescarches of Parker* on the nptic chiasma are of gieat importance for the classification of the Heterosomata. He found that in various symmetrical 'Teleosts the left nerve crussed above the right about as frequently as the right above the left; this wats also the case in flat-fishes of the family Solcide as recognized by Jordan and Evermann \dagger, whether dextral (Solea, Achirus) or sinistral (Symphurus). From this dimorphism of the chiasma it follows that in the Soleide the optic nerves are partly uncrossed when the nerve of the migrating eye is dorsal, and that they almost cross each other twice when it is ventral. In other flat-fishes, whether dextral (I'settichthys, Atheresthes, P'arophrys, Pleuronectes, \&c.) or simistral (P'aralichthys, Platophrys, C'itharichthys, d'e.), Parker found that it was always the case that the nerve of the migrating eye was dorsal, the only exception being in the case of reversed examples, i. e. sinistral members of dextral species or dextral members of sinistral species, in which that nerve was dorsal which was nomally dorsal in tho genus. In a few species of the l'acific cuast of North America sinistral and dextral individuals are equally numerous; but in a species of at sinistral genus, such as l'uralichthys califormicus, tho nerve of the right eye is always dorsal, whether the individual be sinistral or dexiral; similarly, in a species of a dextral gemens, such as Plutichethys stellatus, the nerve of the left eye is doral. This monomorphism of the optic chiasma is obvionsly a specialization, which Parker considers has been

* Bull. Mus. Comp. Zool. xl. pp. 219-242 (1903).

arrived at on account of its mechanical advantage, and he draws the deductions that the Soleidæ are a natural group and that they have evolved from more generalized flat-fishes than those with a monomorphic chiasma.

Parker did not examine Psettodes. I find that in two sinistral examples of this monotypical genus the right nerve is dorsal in one, ventral in the other ; this establishes that

Fig. 2.

Dorsal views of anterior parts of brains with cerebral hemispheres removed, showing eyeballs, optic nerves, and optic lobes. (After Parker).
A. Paralichthys californicus, sinistral species, with nerre of right eye dorsal. 1, sinistral indiridual ; 2, dextral individual.
B. Platichthys stellatus, dextral species, with nerve of left eye dorsal. 3, sinistral individual ; 4, dextral individual.
the chiasma is dimorphic, and it appears to me that in all probability the presence of sinistral and dextral individuals in equal numbers is primitive and is of another nature from the phenomena observed in some species of Paralichthys and Platichthys.

Kyle * has written a valuable paper on the classification of the Heterosomata, and has used some new characters without

[^2]quite appreciating their full importance. Adopting Jordan and Evermann's two families, Pleuroncetide and Soledde, he has fomb that in the firmer the nasal organ of the hind side has accompanied or followed the eye in its migration, and lies nearly on the edge of the head, whereas in the latter the masal organs are phaced symmetrically; this confirms Parker's idens as to the soleidir, and I may mention that, althongh in P 'seltudes the nasal organs are not guite symmetrical, they are very nearly so.

Kyle has alson fomed that in Peltodes, the sinistral Pleurnnectuids, and the Soledse the olfactory lamime radiate from

Fin. 3.

. 1.

11.

Nasal organ of eyent -ide of (A) Inabut (Hippoylossus hipherglossue) and (13) T'ubot (Jiulhus maximus). (After Kyle.)
ol, offactory lamine ; ne, nasal sacs; n, nasal bones.
or ane arranged transversely to a median rachis, as in most Teleosts, whereas in the dextral Pleuronectoids (except the Soleidx) the lamine are parallel and there is no rachis. Unfortunately Kyle's researches preceded Parker's, which would perhaps have riven him the idea of the primary importance of sinistrality and dextrality, in spite of reversed examples, and might have led him to utilize the differences in the structure of the pelvic fins for the definition of subordinate gromps only.

The distinctuese of the sinistral and dextral Plemronectiformes from each other is shown not only by the structure of the olfactory organs and the monomorphism of the optic chiasma, but also hy the egers. 'Those of Mippoglossus, Hiphproglossoides, Ilemromectes, Dicrostomus, and (ilyphocephalus are known to have an undivided yolk withont oil-globule; Whilst those of Paralichelhys, Ciuharus, I'lutophrys, Arnoglossus, Diothus, Leepidorhombus, D'hrynorhomhus, and Zeutjopterus are distinguished by the presence of a single oil-globule in the yolk. The egre of Solea differs again, having a number of small oil-globules at the surface of tho yolls.

Am, © May. N. Mist. Ser. S. Voi. vi.

I venture to think that it is fairly certain that from some form not very unlike Psettodes the two groups typified by the plaice and the sole have arisen, and that each of these has split into two series, a sinistral and a dextral. These conclusions are embodied in the following classification, and may be expressed diagrammatically thus:-

Order HETEROSOMATA.

Asymmetrical, with both eyes on one side. Body strongly compressed, with the precaudal regionshort ; dorsal and anal fins long ; caudal fin with 17 principal rays (15 branched) or fewer ; pelvic fins 6-rayed or less, thoracic or jugnlar, with the pelvic bones directly attached to the eleithra. Air-bladder absent in the adult. Mouth more or less protractile, bordered above by the premaxillaries only. Parietals separated by the supra-oceipital ; interorbital har mainly formed by the frontal of eyed side; frontal of blind side extending to preefrontal external to upper eye; no orbito-sphemoil. Pectoral arch attached to skull by a forked post-temporal : no mesocoracoid. Vertebral column of solid centra coossified with the arehes; posterior precaudal vertebre with downwardly directed parajophyses.

Suborder 1. Psettodoidea.

Dorsal fin not extending forward on the head; anterior dorsal rays spinous; each pelvic fin of a spine and 5 soft rays. Maxillary with a well-developed supra-maxillary bone; palatines tonthe ; urolyal normal, the lower elge scarcely curved. Two post-cleithra on each side. Vertebra 24 $(10+14)$. Species with sinistral and dextral individuals equally numerous and with the optic chiasma dimorphic.

Family 1. Psettodidm.

Pelvic fins nearly symmetrical in form and position, posterior to the cleithra. Mouth large, with strong pointed teeth; jaws and dentition equally developed on both sides. Nasal organ of blind side scarcely higrice than the other ; olfactory laminæ arranged transversely to or radiating from a central rachis. Praceaudal parapophyses duwnwardly directed and united to torm closed hromal arches; pectoral ratials well developed.

A single species, Psetlodes erumei, ranging from West Africa to China. It has no gill-rakers, and the strongly touthed month is larger than in any other flit-iish; this is evidently a predaceous tish, which probably lies on the bottom concealed from its prey, and then darts out, swimming rapidly for a short distance by lateral movements of the tail. Probably it has retained so many Percoid features becanse it has not adopted progression by undulating movements of the body and marginal fins to the same extent ats other fishes of this urder.

Suborder 2. Pleuronectoidea.
Dorsal fin extending forward on the head at least to above the eye; all the fin-rays articnlated; each pelvic fin of 6 or fewer rays. No supramaxillary bone; no palatine teeth; lower edge of urohyal deeply emarginate, so that the bone appears forked. On each side a single post-cleithrum or none. Vertebra never fewer than $28(9+19)$.

Division 1. Pleuronectiformes.

Mouth usually terminal, with the lower jaw prominent; preoperculum with free margin. Nasal organ of blind side near edge of head. Optic chiasma monomorphic, the nerve of the left eye in dextral forms and that of the right eye in sinistral forms always dorsal. A post-cleithrum; ribs present.

Family 1. Bothidm.

Sinistral, except for reversed examples in certain species. Nerve of the right eye always dorsal. Olfactory lamine arranged transversely to, or radiating from, a central rachis. Egg with a single oil-globule in the yolk. Pectoral radials present.

Sulfamily 1. Paralichthivze.

Pelvic fins short-based, supported by the pelvic bones and situated behind the cleithra, either symmetrical or with the fin of the eyed side nearly median in position. Vertebre $33-41(9-12+24-30) ;$ most or all of the parapophyses in the præcaudal region downwardly directed, united or connected by bridges to form closed hæmal arches; caudal vertebræ without transverse apophyses.

Principal genera:- T'ephritis, Terasper, Hippoglossina, Lioglossina, Aystreurys, Puralichthys, Pseudorhombus, Liamuluria, Aucylopsetta, Notosema, Gastropsetta, Cyclopsetta, Syacium, Azevia, Citharus, Citharichthys, Thysunopsettu, Etropus, from tropical and temperate seas.

In most the mouth is moderately large, with the jaws and dentition nearly equally developed on both sides; but in the small-mouthed Etropus the jaws of the blind side are curved and are much more strongly toothed than those of the eyed side.

I have examined the skeletons of Paralichthys (vertebræ $10+24)$, Pseudorhombus $(10+27)$, Citharichthys $(11+28)$, and Syacium $(10+25)$.

Subfamily 2. Peatopintave.

Pelvic fin of blind side short-based ; pelvic fin of ocular side elongate, extemding forward to the urolyal, supported by a cartiaginous plate placed in advance of the elcethat. Vertebre 37-43 (9-10+27-33) ; parapophyses in precaudal region connected or united as in the Paralichthine ; candal vertehate with well-developed transverse apmplyses.

Principal genera:-Arnoglossus, Anticitharus, Chascanopisettu, I'elecanichthys, Secropis, Eingymrosopon, Lueops, Monolene, Trichopsetta, Plutophrys, Lepidopsettu, Lophonectes, from tropical and temperate seas.

In the small-monthed Lapops the jaws and dentition are unequally developed on the two sides, just as in Etropus.

I have examined skeletons of Arnoillossus (vertebrat $10+33$), Platophrys $(10+29)$, and Lophonectes $(10+31)$.

Subfamily 3. Bothive.

Thoth pelvic fins clongate, extending forward to the urohyal, supported by cartilaginons plates placed in advance of the cleithra. Vertebre $3 \overline{5}-11(3-12+25-31)$; parapophyses in preaudal region separate; caudal vertebre with welldeveloped transverse apoplyyses. Jaws and dentition equally developed on both sides.

Genera:-Bothus, Lepidorhombus, Zeugopterus, and Dhrynorhombus, from the North Atlantic and Mediterranean.

I have examined skeletons of Bothus (vertebree $11+25$), Lepriturhomhus $(9+31)$, Zeugopterus $(9+26)$, and D'hrynorhombus $(10+26)$.

Family 2. Pleuronectidæ.

Dextral, except for reversed examples in certain species. Nerve of the left ege always dorsal. Ulfactory lamine slightly raised, parallel, withont rachis. Eggr without oilglubules.

Subfamily 1. Pleunonectin.e.

Anterior part of dorsal fin posterior to nasal organ of blind side; pelvie fins short-based, supported by the pelvic bones posterior to the cleithra, similar in form and symmetrical, or the fin of the eyed side median. Pectoral radials present; hypucoracoids hanrowed forward below. Vertebra 3:-65 ($10-16+23-52$) ; pracaudal parapophyses scpuate, divergent.

The principal genera may be arranged thus :-
A. Mouth large, with the jaws and dentition nearly equally developed on both sides. Vertebræ 40-50 ($10-16+29-37$).
Hippoglossus, Atheresthes, Platysomatichthys, Hippoglossoides, Psettichthys, Eopsetta, and Liopsetta, from arctic and northern seas.
B. Mouth small, asymmetrical, the jaws and dentition more developed on the blind side. Vertebræ 35-65 (10-1.4+23-52).
Pleuronichthys, Parophrys, Isopsetta, Limanda, Pleuronectes, Platichthys, Microstomus, Glyptocephalus, \&c., from arctic and northern seas, with Pcecilopsetta, Boopsetta, and Nematops, from the Indo-Pacific.

I have examined specimens of Hippoglossus (vertebra $16+34)$, Hippoglossoides $(13+31)$, Psettichthys $(10+32)$, Pleuronectes $(10-11+24-30)$, Parophrys $(13+24)$, and Microstomus ($12+36-37$).

Subfamily 2. Samartnat.

Dorsal fin extending forward on snout either above or below nasal organ of blind side; pelvic fins supported by the pelvic bones behind or below the cleithra, asymmetrical, that of the eyed side median and somewhat advanced. Pectoral radials present; hypocoracoids expanded. Vertebræ 31 $(10+21)$; præcaudal parapophyses united to form closed hæmal arches bearing the slender ribs at their extremities. Mouth symmetrical, with the jaws and dentition nearly equally developed on both sides.

Genera :-P'aralichthodes, Brachypleura, and Samaris, from the Indo-Pacific.

Well distinguished externally from the Pleuronectinæ with synmetrical mouth by their form, the absence of a distinct caudal peduncle, the extension forward of the dorsal nearly to the end of the snout, and the asymmetrically placed pelvic fins, these three genera form a natural and well-marked group. Paralichthodes differs from the others in that the nostrils of the blind side appear below instead of just above the anterior part of the dorsal fin, and Samaris is distinguished by the more extended bases of the pelvic fins.

I have examined the skeleton in Brachypleura.

Subfamily 3. Rinombosolemine.

Dorsal fin extending forward on snout above nasal organ of blind side ; pelvie fins formed as in the F latophrine, that of the eyed side median, extending forward to the urohyal, supported by a cartilarimous plato in advance of the cleithra; that of the blind side small or sometimes absent. No pectoral radials, the rays inserted on the hypereoracoid; hypocoracoids narowed forward below. Vertebral column formed as in the Plouronectine, the prapeandal parapophyses not mited. Munth asymmetrical ; jaws of the blind side strongly curved, those of the eyed side toothless.

Genera:-lihombosolea, Ammotretis, and Peltorhamphus from Southern Australia and New Zealand, with Uncopterus from Patagonia.

I have examined the skeleton in lhombosolea (vertebre $10+21$) and P'eltorhamplus $(9+27)$.

Division 2. Soxetformes.

Mouth small, terminal, subterminal, or inferior, the lower jaw never prominent ; juws of the blind side toothed, strongly curved, the convexity of the lower fitting the concavity of the upper ; jaws of the eyed side not or but feebly toothed ; preopereular margin not free. Nasal organs symmetrical in position; olfactory lamine arranged transversely to or radiating from a contral rachis. Optic chiasma dimorphic, the right or the left nerve dorsal without reference to dextrality or sinistrality. No post-cleithrum ; no pectoral radials, the rays inserted on the hypercoracoid; hypocoracoid reducel; pelvic fins supported by the pelvic bones, which are dependent from the lower extremities of the cleitha, which do not reach the ventral protile ; procandal parapophyses mited or connected by a bridge to form closed hamal arches; no ribs.

Family 1. Soleidæ.

Dextral. Caudal fin separate or not ; pectorals often present ; both pelvic fins usually developed, but that of the Llind side sometimes vestigial or absent, that of the eyed side sometimes median, with extended base. Vertebre 2S-57 $(3-10+19-48)$.

L'rincipal genera:-Solea, Synaphura, Esopia, Achirus, I'urduchirns, Liuchirns, Gymnachirus, Apionichthys, mostly
from the sandy shores of tropical and temperate seas; many species enter rivers and some are permanently fluviatile.

I have examined skeletons of Solea (vertebre 9-10 +31-41), Synaptura $(9+41-48)$, Achirus $(9+20)$, Pardachirus $(10+27)$, and Liachirus $(10+23)$. Achirus is certainly generically distinct from Solea, but there are no structural characters which entitle it to rank as the type of a distinct subfamily, as in Jordan and Evermann's classification.

Family 2. Cyncglossidx.

Sinistral. Vertical fins confluent; no pectorals; pelvic fin of blind side present, 4 -rayed, median in position, that of eyed side displaced upwards and reduced, or entirely wanting; pelvic bone of the reduced or absent fin much smaller than the other. Vertebræ 47-65 (9-10+38-56).

Principal genera:-Symphurus, Paraplagusia, Cynoglossus, from tropical and temperate seas.

I have examined skeletons of Symphurus (vertebre $9+40$), Paraplagusia $(9+43)$, and Cynoglossus $(9+56)$. The skeleton is strikingly similar to that of the Soleidæ, and there can be no doubt that the two families are closely related; as in Achirus and other Soleid genera without pectoral fins, the coracoid bones are absent.
LV.-New Unionidæ from East Asia. By Dr. F. Hass, Senckenberg Museum, Frankfurt-a.-M.
In preparing a continuation of Küster's Monograph of Unio in the 'Nartini-Chemnitzsches Conchyliencabinet' I examined a large number of shells, which, for the greater part, belonged to the Senckenberg Musenm or were purchased from Messrs. Sowerby and Fulton, Kew, and Mr. H. Rolle, Berlin. The East-Asiatic Unionidæ of the Zoological Museum of Berlin were also at my disposal. Among all these shells I found the following new species and subspecies, the types of which, with the only exception of Noclularia undulata, belonging to the Berlin Museum, are in the collection of the Senckenberg Museum, and which I shall figure in my monograph mentioned above.

1. Todularia denserugata, sp. n.

Shell elongate-elliptical, rather solid and inflater, rounded

[^0]:

[^1]: * Regan, Ann. \& Mag. Nat. Hist. (8) v. 1910, p. 357.
 + Zool. Anz. 1902, pp. 305-320.
 \ddagger Ann. \& Mag. Nat. Hist. (7) x. 1902, pp. 295-304.

[^2]: * Rep. Fisheries Board scotland, xviii. 1900, pp. 335-368, pls. xi.-xii.

